The Marichev-Saigo-Maeda Fractional Calculus Operators Pertaining to the Generalized K-Struve Function
نویسندگان
چکیده
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملon certain fractional calculus operators involving generalized mittag-leffler function
the object of this paper is to establish certain generalized fractional integration and differentiation involving generalized mittag-leffler function defined by salim and faraj [25]. the considered generalized fractional calculus operators contain the appell's function $f_3$ [2, p.224] as kernel and are introduced by saigo and maeda [23]. the marichev-saigo-maeda fractional calculus operat...
متن کاملFractional calculus and application of generalized Struve function
A new generalization of Struve function called generalized Galué type Struve function (GTSF) is defined and the integral operators involving Appell's functions, or Horn's function in the kernel is applied on it. The obtained results are expressed in terms of the Fox-Wright function. As an application of newly defined generalized GTSF, we aim at presenting solutions of certain general families o...
متن کاملCertain Fractional Integral Formulas Involving the Product of Generalized Bessel Functions
We apply generalized operators of fractional integration involving Appell's function F 3(·) due to Marichev-Saigo-Maeda, to the product of the generalized Bessel function of the first kind due to Baricz. The results are expressed in terms of the multivariable generalized Lauricella functions. Corresponding assertions in terms of Saigo, Erdélyi-Kober, Riemann-Liouville, and Weyl type of fraction...
متن کاملFractional Calculus of the Generalized Wright Function
The paper is devoted to the study of the fractional calculus of the generalized Wright function pΨq(z) defined for z ∈ C, complex ai, bj ∈ C and real αi, βj ∈ R (i = 1, 2, · · · p; j = 1, 2, · · · , q) by the series
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Nonlinear Sciences
سال: 2020
ISSN: 2444-8656
DOI: 10.2478/amns.2020.2.00064